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ABSTRACT
The occurrence of quartz-pebble conglomerates (QPC) in the rock record increases

backward through time from the Tertiary through the Precambrian. The positive cor-
relation between QPC abundance and age is valid both for numbers of reported QPC
and for QPC as a percentage of all conglomerate, and at both the era and the period
level. QPC are usually interpreted as being due to intense chemical weathering, pro-
tracted transport, or sediment recycling, but none of these can account for the age
distribution of QPC, which is the opposite of the global mass-age distribution for
sedimentary rocks. Precambrian and Tertiary conglomerates with similar sources and
sedimentology have vastly different clast populations, nonquartzose clasts being much
more abundant in the younger rocks. Comparison of the petrology of QPC and po-
lymict conglomerates shows that QPC have consistently higher proportions of diage-
netic secondary matrix and pressure-solved grain contacts. We conclude that diage-
netic factors play an important role in QPC formation by preferentially destroying
less durable clasts.
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INTRODUCTION
In quartz-pebble conglomerates (QPC),

more than 90% of the clasts consist of vein
quartz, chert, or quartzite (Boggs, 1992).
Some ancient QPC are .100 m thick and cov-
er areas ;25 km2 (Trevena, 1979; Ethridge et
al., 1984; Mosher et al., 1993; Cherichetti et
al., 1998), and interbedded sandstone-QPC se-
quences can be .1000 m thick and cover hun-
dreds of square kilometers (Kingsley, 1984),
but no volumetrically significant deposits of
this type are forming at present. Small quartz-
pebble accumulations may occur locally in
drainages directly overlying quartzite bedrock,
but thick or laterally extensive modern units
are not known. In the geologic record, how-
ever, substantial QPC accumulations are found
in sequences derived from lithologically di-
verse source rocks. In addition, QPC become
more common further back in the geologic
record.

QPC are generally considered to have spe-
cific paleoclimatic or paleogeographic impli-
cations. Current sedimentology textbooks
state that they represent tectonically quiescent
conditions under which chemical and mechan-
ical weathering were very efficient (e.g.,
Prothero and Schwab, 1996, p. 76; Selley,
2000, p. 383; Boggs, 2001, p. 151). Processes
invoked to explain QPC include prolonged
mechanical abrasion (Abbott and Peterson,
1978; Kingsley, 1984), intense chemical
weathering (Dal Cin, 1968; Reimer and Moss-
man, 1990), or recycling of older conglomer-
ate (Youngson and Craw, 1996). Many QPC,
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however, were deposited on alluvial fans, im-
plying a short interval between erosion and
deposition and thus little time for breakdown
of labile clasts. In addition, independent evi-
dence for intense weathering conditions at
source or in the depositional basin is generally
lacking. There are abundant examples of such
problematic deposits (e.g., Smith, 1967; Eth-
ridge et al., 1984; Kingsley, 1984; Kraus,
1984; Bayne, 1987; Mosher et al., 1993).

QPC host many gold and uranium orebod-
ies, and there is active debate about connec-
tions between the mineralization and diagen-
esis (e.g., Robinson and Spooner, 1984;
Reimer and Mossman, 1990). Conglomerates
also form petroleum reservoirs (e.g., Glover,
1982; Cronin and Kidd, 1998), and prediction
of porosity, permeability, and reservoir quality
depend on understanding their diagenetic his-
tories. More generally, understanding QPC
genesis bears on interpretations of paleoge-
ography, paleoclimate, and depositional envi-
ronments. We present evidence that QPC may
form during diagenesis by alteration of poly-
mict conglomerate precursors.

AGE DISTRIBUTION OF QUARTZ-
PEBBLE CONGLOMERATES

Sedimentary rocks show a well-document-
ed inverse relationship between preserved vol-
ume and age (Gilluly, 1969; Garrels et al.,
1972; Ronov et al., 1980; Ronov, 1983). QPC,
in contrast, tend to be more common in older
sequences. It is not possible to measure the
global mass-age distribution of conglomerates
directly, because the units are generally below
the scale of regional geologic maps. We have
therefore used the American Geological Insti-

tute GeoRef database as a proxy (Appendix1)
and have tallied references to conglomerates
and QPC of different ages (Table 1; see foot-
note 1).

Conglomerate records (QPC plus non-QPC)
constitute 2%–3% of the GeoRef records for
each time interval from Tertiary to Archean,
reflecting the fact that conglomerates form a
minor but consistent proportion of sedimen-
tary rocks (Table 1, column B; see footnote
1). In addition, the records for conglomerates
(QPC plus non-QPC) show a marked decrease
with increasing age, which closely matches
the global mass-age distribution of sedimen-
tary rocks (Fig. 1). QPC data, however, have
a very different age distribution. The number
of records for Paleozoic QPC is double that
for the Cenozoic and Mesozoic, and for the
Precambrian it increases further, by a factor of
three (Fig. 2). The trend does not reflect var-
iation in conglomerate volume through time,
because the QPC numbers change as a pro-
portion of total conglomerate records (Table
1, column C; see footnote 1). Likewise, the
consistency of the proportion of conglomerate
records for each time interval, including the
Proterozoic and Archean (Table 1, column B;
see footnote 1), demonstrates that the pattern
is not an artifact of era or period length.

QPC are most prominent in the Precambri-
an. Whereas average Phanerozoic values are
,1%, QPC account for 6.4% of Proterozoic
and 6% of Archean conglomerate records. The
database for Precambrian QPC of known age
is small and the time intervals are large in
comparison with the Phanerozoic (Table 1,
column D; see footnote 1), but the pattern is
the same: the number and proportion of QPC
increase strongly with increasing age. This
consistent trend toward increasing abundance
of QPC in older rocks is in direct contrast to
the age distribution of preserved sedimentary
rock, and requires explanation.

DIAGENETIC EFFECTS ON THE
COMPOSITION OF CLASTIC ROCKS

Diagenesis plays a major role in the com-
positional evolution of clastic rocks. Chemical
alteration coupled with mass transfer of ma-

1Data Repository item 2002031, Appendix, De-
scription of the search terms used and the rationale,
Table 1, GeoRef data for conglomerates and QPC,
and Table 2, Point-count data for thin sections of
conglomerate interclast material, is available from
Documents Secretary, GSA, P.O. Box 9140, Boul-
der, CO 80301-9140, editing@geosociety.org, or at
www.geosociety.org/pubs/ft2002.htm.
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Figure 1. Comparison between numbers of GeoRef records for conglomerates (both quartz-
pebble conglomerates [QPC] and non-QPC) and mass-age distribution of sedimentary rocks.
Survival rate for each time interval (axis A) is given in metric tons per year (graph shows
data from Gregor, 1985; other models are very similar).

Figure 2. Quartz-pebble conglomerate (QPC)
records for each time interval as percentage
of all conglomerate (QPC plus non-QPC) re-
cords (see also Table 1 [text footnote 1]).

Figure 3. Point-count data
for interclast material in
conglomerates. Value for
pressure-solved grain
contacts is sum of nested
1 interpenetrating con-
tacts. Complete data are
given in Table 2 (see text
footnote 1).

terial can produce extensive secondary poros-
ity (Siebert et al., 1984; Surdam et al., 1984)
and ultimately diagenetic quartz arenites (e.g.,
Milliken, 1988; Abdel Wahab, 1998). Most
studies have focused on sandstones, but the
principles should be equally applicable to
conglomerates.

Volume loss, mostly through dissolution of
feldspar and rock fragments, is commonly
20%–30% (Wilkinson et al., 1997; Abdel Wa-
hab, 1998). Intergranular volumes ,30% are
commonly seen in well-sorted sandstones, in-
dicating dissolution and loss of grain mass
(Houseknecht, 1987, 1989). There are marked
compositional gradients with depth due to in-
trastratal dissolution (Cavazza and Gandolfi,
1992), and volume loss of almost 40% is
known in deeply buried sandstone (Milliken
et al., 1994). In the absence of overpressuring,
secondary porosity can be eliminated by com-
paction (Harris, 1989), in which case there
may be no record whatsoever of the former
presence of a labile grain population.

To our knowledge, there are no studies of
porosity loss, diagenetic mass transfer, or in-
trastratal solution in conglomerates. Pressure

solution in QPC is very common, however, at
both the macroscopic and microscopic levels
(Mosher, 1976, 1981). Diagenetic quartz ar-
enites have also been shown to display an
anomalously high proportion of strongly
welded and pressure-solved grain contacts
(Harris, 1989).

DIAGENESIS IN POLYMICT AND
QUARTZ-PEBBLE CONGLOMERATES

To test whether there are systematic diage-
netic differences between QPC and polymict
conglomerates, we examined conglomerates
that had been subject to diagenetic processes
for several hundred million years (Table 2; see
footnote 1). Data were collected from inter-
clast material because (1) diagenetic processes
operate throughout the rock and so can be ex-
amined either at the clast or interclast level;
(2) diagenetic products are concentrated in the
interclast spaces; and (3) the mineralogic
products of diagenesis are fine grained and
therefore best examined microscopically.

All samples were unidirectional-flow de-
posits, clast supported, and well sorted. Sam-
pled intervals contained traction structures
such as parallel stratification, crude cross-
stratification, imbrication, or intercalated flat-
laminated sand lenses, indicating vigorous
current activity. Such deposits contain very
small amounts of primary matrix (Visher,
1969). Samples were not taken from diamic-
tites, Bouma sequences, or other sediment
gravity-flow deposits.

The interclast material in polymict con-
glomerates is dominated by sand-sized grains,
with low proportions of matrix (Table 2 [see
footnote 1]; Fig. 3). Water-laid QPC, however,
consistently have large proportions of fine ma-
trix. We interpret matrix volumes .10% (a
conservative figure; see Visher, 1969) as sec-
ondary because they are inconsistent with the
sample sedimentology. In addition, petrologic
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Figure 4. Pressure-solved grain contacts in
quartz-pebble conglomerates from Mazatzal
Group. Framework grains are quartz. Inter-
stitial material is sericitic matrix.

Figure 5. Strength data for clasts from Tertiary Gila assemblage conglomerates of Tonto
Basin.

indicators, such as matrix-filled pore spaces
and floating sand-sized grains (Dickinson,
1970), are commonly seen in the high-matrix
rocks.

The most likely source of the matrix is the
breakdown of labile detrital components (Dick-
inson, 1970). Postdepositional addition is un-
likely because the observed volumes often
greatly exceed the 3%–9% maximum volume
reported for infiltrated material (Moraes and De
Ros, 1992). In addition, infiltrated clays, which
are deposited from through-flowing muddy wa-
ter, generally form grain coatings (Matlack et
al., 1989), whereas the matrix in the QPC com-
pletely occludes pore space.

QPC exhibit substantially more pressure so-
lution than do polymict conglomerates. Grains
in polymict conglomerates generally have
convex to straight grain edges, with tangential
or linear contacts (Table 2 [see footnote 1];
Fig. 3). Grain contacts in QPC, in contrast,
may be strongly modified (Fig. 4), with high
proportions (15%–45%) of nested and inter-
penetrating contacts (definitions follow Taylor,
1950). The strong petrographic distinctions
between QPC and polymict conglomerates are
summarized in Figure 3. Polymict samples
cluster at the low-matrix, low-pressure-solu-
tion corner of the diagram, whereas the QPC
data spread out to much higher values of one
or both parameters.

CONGLOMERATE COMPOSITIONS:
SAME SOURCE AREA, DIFFERENT
AGES

Conglomerates with very similar source
rocks and depositional settings but very dif-
ferent ages (Proterozoic and Tertiary) are
found in central Arizona. The Proterozoic Ma-
zatzal Group is in depositional contact with a
varied provenance, including silicified rhyolite
(now chert), mafic igneous rocks, granitic plu-
tons, schist, and quartzite (Wrucke and Con-
way, 1987), and the basal conglomerate was
deposited in a proximal alluvial fan system
(Trevena, 1979). The Miocene-Pliocene Gila
Conglomerate was also deposited on an allu-
vial fan complex (Scarborough, 1989; Na-
tions, 1990). Its source area includes the same
rocks that contributed to the Mazatzal Group,
in addition to Tertiary basalt and the Mazatzal
Group. The clast compositions of the two
units are, however, profoundly different. The
Tertiary Gila Conglomerate contains quartzite,
rhyolitic chert, schist, granite, and basalt; non-
quartz clasts range from 22% to 55% by vol-
ume (Lang, 1999). Clasts in the Proterozoic
Mazatzal Group conglomerate, in contrast, are
100% quarztose, consisting of rhyolitic chert,
quartzite, and vein quartz (Trevena, 1979;
Bayne, 1987; Cox and Lowe, 1995).

The Mazatzal Group has undergone exten-
sive diagenetic alteration. Almost all intersti-
tial material in the Mazatzal Group conglom-
erate has been converted to phyllosilicate
secondary matrix, and the associated quartz-
ites are diagenetic quartz arenites (Cox and
Lowe, 1996). In addition, interstitial grain
contacts in the conglomerates are strongly
pressure solved (Fig. 4). We infer that the Ma-
zatzal Group conglomerate originated as a
polymict deposit similar to the Gila Conglom-
erate. The secondary matrix represents the
diagenetic breakdown of labile clasts, and the
pressure solution records dissolution, mass

transfer of soluble material, and consequent
volume loss.

Processes operating currently provide a
snapshot of the early stages of this transfor-
mation and suggest preadaptation to diagenet-
ic QPC formation. The Tertiary Gila Con-
glomerate has never been buried. It is
uncompacted and unlithified, but there has
been substantial postdepositional composi-
tional modification. Basalt, granite, and schist
cobbles retain their shapes and textural char-
acteristics and are therefore identifiable; but
they have been altered to clays in situ and
have little or no internal strength (Fig. 5).
Clasts with a low strength index will not sur-
vive as recognizable lithologies during com-
paction and diagenesis, but will be crushed
and redistributed as phyllosilicate-rich inter-
stitial material. The high surface area of the
fine-grained alteration products also makes
them more susceptible to dissolution and mass
transfer. We infer that much compositional
modification leading to the development of
diagenetic QPC may take place before deep
burial.

CONCLUSIONS
This study indicates that, in many cases,

QPC owe their composition to diagenetic pro-
cesses. It is probable that clast disintegration
and dissolution, followed by porosity collapse
and pressure solution along grain boundaries,
is responsible for the composition and texture
of QPC. The volume of phyllosilicate-rich
secondary material remaining in QPC is a
minimum estimate of the volume of labile
clasts lost during diagenesis, because a sub-
stantial proportion of the original clast mate-
rial has probably been removed in solution.
The extent of mass transfer is impossible to
quantify, but the proportion of pressure-solu-
tion volume loss may provide a reasonable es-
timate of the relative magnitude of the effect.



326 GEOLOGY, April 2002

We do not suggest that all QPC formed dia-
genetically. Intense weathering and protracted
transport can certainly produce such deposits.
However, the prevalence of QPC in settings
where conditions are not optimal for their for-
mation as primary deposits strongly suggests
that postdepositional modification often plays
a major role. The possibility that diagenesis
may substantially alter conglomerate compo-
sitions means that careful examination of rock
texture and interclast composition is required
before paleoenvironmental conclusions can be
drawn.
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